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Abstract

Thefocaltracksensorisamonocularandcomputation-
allyefficientdepthsensorthatisbasedondefocuscon-
trolledbyaliquidmembranelens.Itsynchronizessmall
lensoscillationswithaphotosensortoproducereal-time
depthmapsbymeansofdifferentialdefocus,anditcou-
plestheseoscillationswithbiggerlensdeformationsthat
adaptthedefocusworkingrangetotrackobjectsoverlarge
axialdistances.Tocreatethefocaltracksensor,wede-
riveatexture-invariantfamilyofequationsthatrelateim-
agederivativestoscenedepthwhenalenschangesitsfocal
lengthdifferentially.Basedontheseequations,wedesign
afeed-forwardsequenceofcomputationsthat:robustlyin-
corporatesimagederivativesatmultiplescales;produces
confidencemapsalongwithdepth;andcanbetrainedend-
to-endtomitigateagainstnoise,aberrations,andother
non-idealities. Ourprototypewith1-inchopticsproduces
depthandconfidencemapsat100framespersecondover
anaxialrangeofmorethan75cm.

1.Introduction

Depthfromdefocusisanattractiverangingmodalityfor
micro-robots,wearables,andothersmall,low-powerplat-
formsbecauseitfitsintoasmallmonocularpackage,does
notrequireanactivelightsource,andcanbeimplemented
inwaysthatproducedepthmapswithlowcomputational
power.Thishaspreviouslybeendemonstratedwithdefocus
thatiscontrolledbymanipulatingacamera’saperturedi-
aphragm[13],thedistancebetweenasensorandlens[17],
oracamera’sposition[1].
Herewedescribeadefocusrangesensorthatisinstead

basedonlensdeformation,whichhasthepracticaladvan-
tageofprovidingalargeworkingrangewithlittlemechan-
icalpower.Theworkingrangeofanydepthfromdefocus
systembehaveslikeadepthoffieldinphotography:once
anobjectistoofarinfrontorbehindthein-focusplane,the
depth-dependentcontrasteffectsbecometoosmalltodetect
andanalyze.Theadvantageofusinglensdeformationis
thatthesensorcaneasilymimictheaccommodationreflex

Figure1: Focaltracking. Adeformablelenscreates
exposure-synchronizedoscillationsofthein-focusdistance
Zf,producingsequentialpairsofvideoframes(top)with
slightlydifferentdefocus.Depthandconfidencemaps(bot-
tom)arecomputedfromeachpair,atratesupto100fps.The
depthalsofeedsbacktothelenscontrollersothatthesys-
temcan“accommodate”byadjustingitsin-focusdistance
(greenline)tomatchamovingobject.

foundinvertebratevision,adaptivelyshiftingitsin-focus
distancetomatchamovingobject,andtherebyextending
itsdefocusworkingrange.SeeFigure1.

Wecallthisfocaltracking,andwedesignourfocaltrack
sensorintwosteps.First,weuseanidealizedopticalmodel
toderiveanewtexture-invariantfamilyofequationsthatdi-
rectlyrelatethespatialandtemporalimagederivativesata
pixel,∇2I,It,tothescenedepthZattheback-projection
ofthatpixel.Theseequationsarederivedbyanalyzingdif-
ferentialdefocusinthespiritofAlexanderetal.[1],but
withadifferentopticalmodelthatconsistsofathinlens
withGaussianblurandtime-varyingfocallengthf(t).The
simplestequationinthederivedfamilyis

Z=
α∇2I

β∇2I+It
, (1)



where α, β are constants determined by the physical char-
acteristics of the sensor and lens. The simplicity and texture
invariance of these equations are what enable the rapid two-
shot depth computation shown in Figure 1.

In the second design step, we construct a computational
tree that produces reliable depth maps at high frame rates by
using finite differences at multiple scales to robustly imple-
ment Equation 1 and its relatives. The computational tree is
designed to produce confidence maps in addition to depth,
which allows the automatic identification of problematic
image locations such as textureless regions and depth dis-
continuities. Also, while the structure of our computational
tree is closely tied to the physical model, it has the impor-
tant property that all of its free parameters can be jointly op-
timized using end-to-end training with a loss function that
measures the quality of the final depth and confidence maps.
This eliminates the need for manual parameter tuning, and
it allows the system to perform well even in the presence of
non-Gaussian point spread functions, sensor noise, optical
aberrations, and other non-idealities.

To validate the system, we build a prototype using an
off-the-shelf sensor and deformable lens, along with custom
control electronics. When running on a GPU, it provides
useful depth and confidence maps at 100 frames per second.
The code, trained model parameters, and hardware details
are available at http://vision.seas.harvard.edu/focaltrack.

2. Related Work
The general idea of using lens deformation to sense

depth is at least two decades old [13], but the required lens
technology has only recently emerged. It is not the only
way to achieve accommodation, but compared to other ways
of adapting the in-focus position—moving the entire cam-
era [1] or changing the sensor/lens separation [17]—it has
the advantage of requiring less space and mechanical power.

Computationally, there is a healthy variety of techniques
for depth from defocus. Among them, ours is more similar
to the fast, non-iterative methods of Subbarao [12, 13, 14]
and Watanabe and Nayar [17]; and less similar to iterative
methods [8, 16, 7, 18, 3] that rely on statistical models of
sharp natural images and are more geared toward digital
refocusing applications [15, 6]. Our notion of an explicit
confidence map seems new to depth from defocus, and it
may be particularly useful for real-time sensing applica-
tions, like gesture-driven interfaces and robotic grasping,
that can tolerate some missing (low-confidence) values in
the depth map as long the reported high-confidence ones
are accurate.

Our derivation draws inspiration from previous analyses
of Gaussian defocus [12, 13, 4], and in particular from that
of Alexander et al. [1], who analyzed differential changes in
Gaussian defocus as is done here, but for a different optical
configuration that has a standard lens and sensor moving as

a fixed pair. Mathematically, that configuration has the ad-
vantage of measuring velocity in addition to depth, but the
one in this paper has the advantage of producing measure-
ments at every pixel instead of larger image patches.

The deformable lens that we use in our prototype has
previously been used for focal sweep imaging [9]. It is ca-
pable of normal-mode oscillations up to about 100Hz. This
places an upper bound on the frame rate of a focal track sys-
tem, but is likely to increase in the future as deformable lens
technology continues to evolve (e.g. [11]).

3. Physical Model
We consider a static scene imaged through a wide-

aperture lens, so that the captured image I is the spatial
convolution of a depth-scaled filter k with the sharp texture
P that would have been captured by a pinhole camera:

I(x, y, t) =k(x, y, σ(t)) ∗ P (x, y). (2)

We assume Gaussian blur of RMS width σ(t)Σ:

k =
1

σ(t)2
exp

(
− x2 + y2

2σ(t)2Σ2

)
. (3)

Here, the constant Σ is the width of the kernel at uniform
magnification, and the magnification factor σ(t) follows the
thin lens rule and is determined by: the separation µs be-
tween the sensor and lens; the lens’ dioptric power ρ (for a
lens with focal length f , ρ = 1/f ); and the scene depth Z:

σ(t) =

(
1

Z
− ρ(t)

)
µs + 1. (4)

We vary the dioptric power ρ of the lens over time using a
deformable lens, and show that this enables a computation-
ally efficient method for measuring depth.

3.1. Depth from Differential Focus Change

Under a differential change in dioptric power, the bright-
ness of each pixel in the image will change as the scaled
blur kernel re-weights the underlying scene texture:

It =kt ∗ P. (5)

For Gaussian blur, kt ∝ ∇2k, which implies that the same
time and space derivatives of the blurred image are also pro-
portional, regardless of the underlying texture P :

∇2I =∇2k ∗ P =
kt

Σ2σσ̇
∗ P =

1

Σ2σσ̇
It. (6)

For more insight into the special relationship between Gaus-
sian blur and texture-invariant depth sensing, see [1].

This proportionality of image derivatives provides a sim-
ple expression of object depth Z from image values and
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knowable camera parameters:

Z =V/W, (7)

V =(Σ2µ2
sρ̇)∇2I, (8)

W =(Σ2µsρ̇)(µsρ− 1)∇2I − It. (9)

This is Equation 1 from the introduction, and as we noted
there, it provides per-pixel depth from a monocular camera
with simple, non-iterative computation.

We can generalize this equation to a larger family of
equations that are all invariant to texture but can provide
complimentary information about depth. To see how, note
that Equation 7 is undefined when both V and W go to
zero, which occurs in textureless regions and at the cen-
ter of light-dark edges. All defocus cues fail in textureless
regions, but edges can be handled by noting that the ratio
kt

∇2k = Σσσ̇ is independent of image location, so that for
any derivative orders j, k ∈ N and constants λjk ∈ R, depth
can also be recovered using

Z =

∑
j,k

λjk∂
j
x∂

k
yV∑

j,k

λjk∂
j
x∂kyW

. (10)

This means that at pixels where Equation 7 (j, k = 0)
fails, we can still hope to measure depth using higher or-
der derivatives. In practice, we find it useful to compute
multiple depth estimates using a few independent instantia-
tions of Equation 10 (i.e., with V/W , Vx/Wx, and Vy/Wy)
and combine them with adaptive weights. See Section 4.

3.2. Confidence

Regardless of how many derivatives are used, there will
always be problematic image locations where the defocus
cue fails. This includes textureless regions, regions beyond
the working range, points near depth discontinuities, and so
on. We handle these by computing a confidence value to ac-
company the depth estimate at every pixel. These general-
purpose confidence maps are informed by the local image
values and can be used in many ways, from simply discard-
ing low-confidence estimates as we do in Section 6, to fus-
ing the depths with other visual cues (e.g., [2]).

To derive an expression for confidence, we use an addi-
tive zero-mean Gaussian noise model on the image, which
propagates to means and variances of Gaussian random
variables Ṽ and W̃ in terms of physical camera parameters,
derivative scale, and the assumed image noise level. Then
the variance of the depth Z̃ = Ṽ /W̃ can be expressed, to
first order, as

Var[Z̃]≈ E[Ṽ ]2

E[W̃ ]2

(
Var[Ṽ ]

E[Ṽ ]2
+ Var[W̃ ]

E[W̃ ]2
− 2Cov[Ṽ ,W̃ ]

E[Ṽ ]E[W̃ ]

)
. (11)

The confidence C in a given depth measurement is the in-
verse of this measurement, scaled to the range [0,1], so that

for constants ω0, ω1, ω2 determined by the noise level, cam-
era parameters, and derivative scale and order,

C =
(

ω0

W 2 + V 2ω1

W 4 + V ω2

W 3 + 1
)−1/2

≈
(

Var[Z̃] + 1
)−1/2

. (12)

Here, we have used the measured values V and W as prox-
ies for E[Ṽ ] and E[W̃ ], which gives a parametric confidence
model with three tuneable parameters.

Expressions follow immediately for depth measurements
based on derivatives of Ṽ and W̃ . Note that the relative
value of these expressions is determined by local image val-
ues, so that problem patches for each derivative order can be
identified by their lower confidence values.

4. Computational Tree and Accomodation

A primary concern when implementing these calcula-
tions is choosing effective spatial derivative filters for mea-
suring ∇2I and ∂jx∂

k
y∇2I . These filters must include

smoothing for noise suppression, and must also be normal-
ized to avoid bias in Equation 10 and 12. Moreover, their
preferred spatial support depends on the (unknown) scale of
the features at each location of the underlying image.

Our approach is to use a set of Gaussian derivative fil-
ters ∂jx∂

k
y∇2G(i) with different sizes/scales i to create im-

age pyramids ∂jx∂
k
y∇2Ii. We compute separate depth and

confidence estimates for each of these “channels”, and then
we combine them using image-dependent weights that are
based on the estimated confidences. The channels include
a variety of scales i so that the system has the flexibility to
adapt to the feature size at each image location, and they
also include a few different orders j, k to mitigate against
the degeneracy described in Section 3.1.

To make this work, we design a feed-forward computa-
tional tree (Figure 2) that merges parallel depth and confi-
dence estimates from each triple (i, j, k). Apart from being
efficient, the most important property of this approach is
that all of the parameters—including both the optical ones
Σ, µs, ρ and computational ones {ω}—can be end-to-end
optimized by automatic differentiation and gradient descent
on a loss function that measures the overall quality of the
combined depth and confidence map.

End-to-end optimization avoids the limitations of man-
ual parameter tuning. More importantly, it trains the confi-
dence to predict the reliability of depth estimates from dif-
ferent (i, j, k) at each location by fine tuning {ω}. Fur-
thermore, it provides a principled way of handling non-
Gaussian point spread functions that are unavoidable when
using real lenses. Instead of trying to measure the point
spread functions and approximate them with values of
(Σ, µs, ρ), the end-to-end approach automatically finds val-
ues that are optimal for the task at hand: producing accurate,
high-confidence depth at the image locations that allow it.
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Figure 2: Computational tree. Lower nodes compute con-
ventional Gaussian and Laplacian pyramids for each input
pairs (I0, I1), to obtain intermediate maps (V i,W i) at each
scale i. Upper nodes apply a set of derivative filters {∂jx∂ky},
and estimates per-ijk depth and confidence maps that are
ultimately fused via softmax.

The input to the tree is a pair of images (I0, I1) cap-
tured with known and slightly different dioptric powers
(ρ + ∆ρ, ρ − ∆ρ). Each is decomposed into pyramids,
and for each scale i, we compute a temporal finite differ-
ence Iit = 0.5(Ii0 − Ii1), the spatial Laplacian ∇2Ii =
0.5(∇2Ii0 +∇2Ii1), and the intermediate maps

(V i,W i) = (aib∇2Ii, ai∇2Ii − It). (13)

The single parameter b models the optical term µs/(µsρ −
1) = Zf , which is the average in-focus distance for the two
images, and the per-scale parameter ai models the combi-
nation of the optical term (Σ2µsρ̇)(µsρ − 1) and the nor-
malization factor induced by the filters at scale i.

Each 2D map (V i,W i) is bilinearly upsampled to full
resolution and spatially filtered with a difference filter for
each (j, k). Depth and confidence maps are computed via

Zi,j,k =
∂jx∂

k
yV

i

∂jx∂kyW
i

+ c, (14)

Ci,j,k =

 ωi,j,k
0(

∂jx∂kyW
i
)2 +

ωi,j,k
1

(
∂jx∂

k
yV

i
)2(

∂jx∂kyW
i
)4 +

ωi,j,k
2

(
∂jx∂

k
yV

i
)(

∂jx∂kyW
i
)3 + 1


−1/2

,

(15)
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Figure 3: Feedback control for accommodation. The me-
dian of the measured scene depth feeds back to the lens
controller, as a slow-changing offset to the sinusoidal con-
trol signal. This keeps moving objects in focus, where the
defocus cue is strongest, for an extended working range.

where parameter c models the sensor’s position in some
global coordinate system. Finally, the per-ijk maps are
fused via softmax:

(Z,C) =
∑
i,j,k

βi,j,k(Zi,j,k, Ci,j,k),

βi,j,k =
exp(Ci,j,k)∑

i,j,k

exp(Ci,j,k)
.

(16)

As shown in Figure 3, we implement accommodation us-
ing a PID controller to add offsets to the focal oscillations
in order to match the median of the high-confidence depth
estimates across the scene, or a region of interest within it.
The lens signal is a sinusoid u(t) = U(t)+U1 cos(ωt) with
constant U1, frequency ω that matches the sensor’s frame
rate, and control signal U(t). The image pairs are captured
at U(t)+U1 and U(t)−U1, and the dioptric power is linear
to the signal, ρ(t) = ηU(t).

5. Calibration
We capture calibration data using scenes that are planar

and normal to the optical axis, so that the ground truth depth
map Z∗ is constant for each frame. Each calibration frame
includes Z∗, a pair of images (I0, I1), and the dioptric pow-
ers (ρ−∆ρ, ρ+ ∆ρ) under which they were captured.

The tunable parameters are {ai, b, c, ωi,j,k}, and their
preferred values depend on the sensor’s (typically, non-
Gaussian) point spread functions. For this reason, the diop-
tric difference 2∆ρ remains fixed during calibration and
then during subsequent use. During accommodation, a sen-
sor’s point spread functions change, and so do the preferred
parameter values. We handle this by calibrating the param-
eters at a single dioptric power offset ρ = ρ0 to obtain
{ai, b, c, ωi,j,k}(ρ0) and then adapting them according to
the known ρ(t) during accommodation.



Toderiveadaptationequations,recallourphysicalmodel
forin-focusdistance:

Zf(ρ(t))=
(µsρ0−1)Zf(ρ0)

µsρ(t)−1
=
(µsρ0−1)Zf(ρ0)

µsηU(t)−1
.(17)

Thisimmediatelysuggeststheadaptivemodelforb:

b(ρ(t))=(d1U(t)−d2)
−1, (18)

withconstantsd1andd2.Valuesforthetwoconstantsare
determinedbyplacingaplanarpatchatseveralknowndis-
tancesthroughouttheaccommodationrange,andforeach
oneadjustingthelenssignalUuntilthepatchisinfocus.
Thisgivesasetof(Zf,U)-pairsthatweuseasaproxyfor
asetof(b,U)-pairsfromwhichwecanlinearlyfitd1and
d2.Then,theopticalparameters{a

i}adaptas

ai(ρ(t))=ai(ρ0)b(ρ0)/b(ρ(t)). (19)

Theparameterc(depthoffset)andconfidenceparameters
{ωi,j,k}areusedforalllenssettingswithoutadaptation.
Therestofthissectiondescribescalibrationatρ0.

5.1.Initialization

Thenon-linearityofourmodelmakesitimportanttoob-
taingoodinitializationofparameterspriortogradientde-
scent. Wefinditsufficienttoinitializeconfidenceparame-
ters{ωi,j,k}to1,andgoodinitializationfortheotherpa-
rameterscanbederivedfromtheirphysicalinterpretations.
Theparametersb(in-focusdistance)andc(depthoffset)

aresimplyinitializedwithcrudevaluesfromatapemea-
sure.Theparameters{ai}arehardertomeasuredirectly,
soweinitializetheminsteadbyfittingtotheentiretraining
set.Foreachscalei,weformthelinearsystem

ai∇2Ii=
Z∗−c

(Z∗−c)−b
Iit, (20)

andseteachaitoitsleast-squaresestimate:

ai=
(Z∗−c)Iit·∇

2Ii

(Z∗−c−b)(∇2Ii·∇2Ii)
. (21)

5.2.Optimization

Wejointlyoptimizetheparametersbygradientdescent,
withthegoalofminimizingmeandeptherrorandmaximiz-
ingnumberofhighconfidencepredictionsoverthecalibra-
tiondataset.Atleasttwotypesofdifferentiablelossfunc-
tionscanbeused.Onetypeisthestandardp-normloss,

L(Z−Z∗,C)=(mean(|Z−Z∗|p))
1/p
.





(22)

Anothertypeofdifferentiablelosscanbecreatedusing
therecentnotionofareaunderthesparsificationcurve

Figure4:Sensorprototype.Exposureissynchronizedwith
lensoscillationsusingsignalsshowntop-left.Allunitsmm.

(AUSC)[10]. Asparsificationcurvesummarizestheac-
curacyanddensityofaconfidence-weighteddepthmapfor
allpossiblethresholdsofconfidence,andgoodperformance
meanssmallareaunderthiscurve. WecanuseAUSCdi-
rectlyasalossfunction:

L(Z−Z∗)=
1

M
samples

λ·Sort(|Z−Z∗|,C), (23)

where M isthenumberoftrainingsamples,λ =
[1N,

1
N−1+

1
N,...,1+...+

1
N]isaconstantvector,and

Sort(·,C)arrangeseachelementofadepthmapaccording
toitsconfidenceinascendingorder.Thep−normlosscan
beinterpretedasoptimizingthesinglepointonthesparsifi-
cationcurvethatshowstheerroroffulldensity,ratherthan
theareaunderneathit.

6.PrototypeandExperiments

OurprototypeisshowninFigure4.Itusesasingle
deformablelens(EL-10-30-C-VIS-LD-MV,Optotune)that
supportsdioptricpowersρ1∈[−1.5m

−1,3.5m−1].Itis
coupledincloseproximitytoasecondlenswithpower
ρ2 =10m

−1,givingacombineddioptricpowerρ=
ρ1+ρ2−δρ1ρ2≈ρ1+ρ2thatwetaketobelinearwith
respecttothelenscontrolsignal.Thelensassemblyiscou-
pledtoamonochromecamera(GS3-U3-23S6M-C,Point
GreyResearch).Thelensandcameraaredrivenbyacus-
tomsignalgeneratorthatproducestwosynchronizedsig-
nalsasdepictedintheinsetofFigure4.Thus,eachsequen-
tialpairofframesrepresentsimagesI0,I1thatarecaptured
withaslightchangeindioptricpower(ρ−∆ρ,ρ+∆ρ)and
canbefeddirectlyintothecomputationaltree.

Tocreatecalibrationandvalidationdata,weprintten
diversenaturaltextureswithastandardlaserprinterand
mountthemontorigidplanesthatcanbecarefullyposi-
tionednormaltothesensor’sopticalaxisandatseveral
knowndepths(relativetoafixedglobalreferencepoint)
thatspantheintendedworkingrange.Foreachtextureand
depth,wecapturetwo300×480imagesI0,I1.Thisgives
asetoftriplesofimagesanddepths{(I0,I1,Z

∗)}.Weuse



the data from two of the textures for calibration, and the
remaining eight for validation.

We use a computational tree with four scales i =
0, 1, 2, 3 and zero-order and first-order derivatives j + k =
0, 1. Thus, there are twelve depth and confidence maps that
are fused at the final layer. Optimization is implemented
using TensorFlow to take advantage of its automatic dif-
ferentiation functionality. Small constants are added to the
denominators when implementing Equations 14 and 15 to
avoid numerical instabilities. We optimize confidence pa-
rameters {ωi,j,k} (with the constraint ωi,j,k = ωi,k,j) be-
fore optimizing the optical parameters {ai, b, c}.

We compare the quality of the calibrations obtained us-
ing four different loss functions. In each case, optimization
was executed using an NVIDIA Quadro K5000 GPU and
Intel Xeon CPU E5620 x16 Processor. Experimentally we
find the 1-norm loss requires about half the number of it-
erations to converge, making it roughly twice as fast as the
other loss functions for calibration. Figure 5 compares the
performance of these optimized calibrations, as well as the
initialized one, on the validation dataset. In all four cases,
optimization decreases error and expands working range,
which we define as the range over which mean depth error
on the validation set is 10% or less. Since the 1-norm loss
has the best performance and also runs more quickly, we use
this calibration for the remaining results below. Additional
calibration details, including differentiation of the AUSC
loss and the optimization times, are in a supplement [5].

6.1. Results with natural scenes

Figure 6 shows a typical pair of input frames I0, I1 and
the output depth maps, thresholded at confidence 0.99. The
figure shows both the final fused depth map and the internal
depth maps that are produced in each scale/derivative chan-
nel. In every channel of the tree, the blurry background is
deemed to be low confidence and is automatically rejected.
Even inside the object, the channels corresponding to the
finest scales (i = 0) are quite noisy and many of the depth
estimates are discarded at this confidence level. The boxes
overlaid at scale i = 2 in the figure highlight how chan-
nels corresponding to different derivatives can provide com-
plementary information, with low-confidence areas in one
channel often showing high confidence in another.

Figure 6 shows how depth maps in coarser channels tend
to “bleed” beyond object boundaries, because of the simple
upsampling that is used for fusion in our tree. This could
be improved through a more sophisticated fusion scheme,
but for the purposes of this paper, we simply discard the
coarsest channel i = 3 for the remaining results.

Figure 7 shows fused depth maps for a collection of
scenes with a variety of textures and textureless regions
as well as depth discontinuities and areas of high curva-
ture. Note that the sensor interprets highlights, shadows,

Figure 5: Calibration performance on validation set for both
initialized parameters (blue) and optimized ones. Top row:
Mean depth error and mean sparsity (i.e., fraction of pixels
without depth predictions) at increasing confidence thresh-
olds. Bottom left: Mean depth error at different depths, with
working range (dashed) defined as set of depths having less
than 10% error. Bottom right: Working range versus con-
fidence level. It initially expands with confidence level as
the mean error decreases, and then it shrinks as blurry, low-
contrast measurements at the edges of the working range
are thresholded out. As shown in Figure 8, the latter effect
can be avoided by accommodation.

and other lighting effects as additional textural structures on
an object’s surface. Figure 7E shows an example where a
sheet of shiny, translucent bubble wrap is in the foreground.

Figure 8 demonstrates the benefit of accommodation. A
toy leopard is moved through an axial distance of more than
40cm and observed with and without accommodation. With
accommodation, depth is well-measured over a range of
50cm, while the other quickly degrade beyond 10cm from
its fixed focal plane. The supplement [5] contains a more
detailed evaluation of accommodation, showing that it in-
creases the working range to more than 75cm.

The prototype, including accommodation, runs at 100fps
and produces 300× 480 depth and confidence maps using a
laptop with NVIDIA GeForce GTX 1080 notebook graph-
ics card and Intel Core i7 6820HK processor. Demo videos
and code can be found on the project website.
Acknowledgement We thank Alex Kamovich for help-
ful discussions. This project was funded by US Na-
tional Science Foundation awards IIS-1212928 and IIS-
1718012, as well as NSF Graduate Research Fellowship
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Figure6:Depthmapinmetersofatoyleopardatconfidence0.99.Theactuallengthofthetoyis13cm.Toprowshowsthe
imagepairandfuseddepthmapZ.BelowaredepthmapsZi,j,k













foreachchannelofthecomputationaltree.Overlaidboxes
highlighthowchannelscanfailatcomplimentarylocationsduetodegeneracy,andhowfusioncansuccessfullymergethem.

Figure7:Measurementsofseveralsimplesceneswithvaryingconfidencethresholds.Depthinm.



 

Figure8:Demonstrationwith(left)andwithout(right)accommodationforconfidence>0.995anddepthinmeters.The
accommodationcontrollerusesaregionofinterestthatcontainsthetoybutnotthetapemeasure,whichisonlyincludedto
visualizetheadaptingfocaldepth(pleasezoomin).Accommodationmorethandoublestheusefulrangeofthesensor.
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